The Price of Uncertainty: Chance-constrained OPF vs. In-hindsight OPF

نویسندگان

  • Tillmann Muhlpfordt
  • Veit Hagenmeyer
  • Timm Faulwasser
چکیده

The operation of power systems has become more challenging due to feed-in of volatile renewable energy sources. Chance-constrained optimal power flow (ccOPF) is one possibility to explicitly consider volatility via probabilistic uncertainties resulting in mean-optimal feedback policies. These policies are computed before knowledge of the realization of the uncertainty is available. On the other hand, the hypothetical case of computing the power injections knowing every realization beforehand— called in-hindsight OPF (hOPF)—cannot be outperformed w.r.t. costs and constraint satisfaction. In this paper, we investigate how ccOPF feedback relates to the full-information hOPF. To this end, we introduce different dimensions of the price of uncertainty. Using mild assumptions on the uncertainty we present sufficient conditions when ccOPF is identical to hOPF. We suggest using the total variational distance of probability densities to quantify the performance gap of hOPF and ccOPF. Finally, we draw upon a tutorial example to illustrate our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chance Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty

When uncontrollable resources fluctuate, optimal power flow (OPF), routinely used by the electric power industry to redispatch hourly controllable generation (coal, gas, and hydro plants) over control areas of transmission networks, can result in grid instability and, potentially, cascading outages. This risk arises because OPF dispatch is computed without awareness of major uncertainty, in par...

متن کامل

Convex Relaxations of Chance Constrained AC Optimal Power Flow

High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power flow (OPF). Current approaches follow either a linearized approach or an iterative approximation of non-linearities. This paper proposes a semidefinite relaxation of a chance constrained AC-OPF which is able to provide gu...

متن کامل

Voltage Stability Constrained OPF Using A Bilevel Programming Technique

This paper presents a voltage stability constrained optimal power flow that is expressed via a bilevel programming framework. The inner objective function is dedicated for maximizing voltage stability margin while the outer objective function is focused on minimization of total production cost of thermal units. The original two stage problem is converted to a single level optimization problem v...

متن کامل

Chance Constraints for Improving the Security of AC Optimal Power Flow

This paper presents a scalable method for improving the solutions of AC Optimal Power Flow (AC OPF) with respect to deviations in predicted power injections from wind and other uncertain generation resources. The focus of the paper is on providing solutions that are more robust to short-term deviations, and which optimize both the initial operating point and a parametrized response policy for c...

متن کامل

Optimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming

In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018